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Abstract

The physics of spin–rotation interaction in roughly spherical perfluorinated gas molecules has been studied extensively. But, it is
difficult to calculate a spin–lattice relaxation time constant T1 for any given temperature and pressure using the published literature.
We give a unified parameterization that makes use of the Clausius equation of state, Lennard-Jones collision dynamics, and a for-
mulaic temperature dependence for collision cross section for rotational change. The model fits T1s for SF6, CF4, C2F6, and c-C4F8

for temperatures from 180 to 360 K and pressures from 2 to 210 kPa and in mixtures with other common gases to within our limits
of measurement. It also fits previous data tabulated according to known number densities. Given a pressure, temperature, and mix-
ture composition, one can now calculate T1s for common laboratory conditions with a known accuracy, typically 0.5%. Given the
success of the model�s formulaic structure, it is likely to apply to even broader ranges of physical conditions and to other gases that
relax by spin–rotation interaction.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Inert fluorinated gases, such as sulfurhexafluoride,
tetrafluoromethane, hexafluoroethane, and cyclo-octa-
fluorobutane (SF6, CF4, C2F6, and c-C4F8), have single
NMR resonances, and rapid spin–lattice relaxation
from spin–rotation interaction [1]. Because they have
multiple chemically equivalent fluorine atoms per mole-
cule, and one can signal average very rapidly, they are
easy gases to image in porous media, including lungs.
Knowledge of the T1s of these gases for typical labora-
tory conditions and in mixtures with gases commonly
found in lungs has substantial practical application. In
lung imaging, the mixture ratio of gases in alveoli chang-
es depending on the ratio of ventilation rate and blood
perfusion rate (V/Q), and the T1 depends on the compo-
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sition of the mixture. Therefore, one could image V/Q
by imaging the T1, or one could calculate how T1

weighting will affect a spin density image [2].
To study porous materials, inert fluorinated gases can

be imbibed into the pore spaces.When the pores are on the
order of or smaller than the bulk gas mean free paths, col-
lisions of gas molecules with pore walls play an important
role in changing the rotational states of the molecules.
Under these conditions, the relaxation could be used to
measure pore sizes, provided that one knows the relaxa-
tion under bulk conditions for comparison [3,4]. Know-
ing the bulk gas relaxation is also important for
comparison in evaluating the extent to which adsorption
on pore surfaces affects relaxation [3,5–7].

Because the relaxation is dominated by spin–rotation
interaction mediated by molecular collisions, the bulk
gas relaxation rates are, in principle, highly predictable.
There have been measurements of coupling constants
and collision cross sections [8–27] that clearly lay out
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the physical framework, but to calculate a given T1 often
requires determining whether the desired range of phys-
ical parameters has been explored, sifting through differ-
ent parameterizations of relaxation equations, and
interpolating between tabulated parameters, after which
it can be difficult to calculate the accuracy of the result.
We present a unified calculation for common laboratory
conditions so that a computer program will generate T1

within a known accuracy if given pressure, temperature,
and mixture composition.

To develop the calculational scheme, we made careful
measurements that spanned much of the parameter
space of interest and then developed equations with a
small number of adjustable parameters capable of fitting
the entire data set. We drew from existing physically
motivated equations for relaxation, molecular collision
frequencies, and equation of state. We then judiciously
added parameters when doing so substantially improved
the fit to our data. The equations, together with their fit-
ted parameter values, can be used to interpolate between
the experimental conditions and, with somewhat less
confidence, to extrapolate beyond them.

The basic relation of the relaxation rate to the molec-
ular collision frequency was stated in Bloembergen�s
doctoral dissertation [28] for hydrogen gas. We begin
with the work of Courtney and Armstrong [13], whose
physically motivated equations for fluorinated gases
came explicitly from [10,23–27]. In [13], the molecular
collision dynamics were subsumed into a hard-sphere
collision cross section parameter that was endowed with
a nonlinear temperature dependence. Some studies have
used more realistic molecular potential models for colli-
sion dynamics as tools for measuring physical constants
and deeper understanding of the physics (e.g. [14], see
[1]). We use the Lennard-Jones model to take care of
some of the temperature dependence in the hope that
the remaining dependence is easy to match with a small
number of curve-fitting parameters.
2. Methods

2.1. Equations for fitting T1

Spin lattice relaxation rate by spin–rotation interac-
tion in a pure gas obeys

T�1
1 ¼ 8p2I0kBT
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where I0 is the moment of inertia of the molecule, ⁄ is
Plank�s constant, Ci and s1, and Ca and s2, are isotropic
and anisotropic coupling constants and correlation
times, respectively, xI and xJ are nuclear and molecular
Larmor precession frequencies, respectively, T is abso-
lute temperature, and kB is Boltzmann�s constant ([13],
from [10,23–27]).

It is commonly assumed that s1 = s2 ” s because they
both arise from molecular collisions. Then, Eq. (1) sim-
plifies to
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where k1 ¼ 8p2I0kBT
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and k2 ¼ 1� xJ

xI
ffi 1 be-

cause xI � xJ. To explicitly introduce molecular colli-
sion frequency f, we introduce a temperature
dependent factor, b = k2/xe, and a coupling constant,
a = k1/k2, where xe ” 1/s is the frequency of collisions
that effect spin–rotation relaxation, to obtain,

T 1 ¼
1

aT
f
b
þ bx2

f

� �
; ð3Þ

where we now use x instead of xI for the nuclear
Larmor frequency. The factor b is the average number
of collisions required to effect one spin–rotation
exchange reduced by the minor deviation of k2 from
unity, so it represents a degree of ineffectiveness for
molecular collisions to cause a spin–rotation event and
f/b = xe/k2 @ xe = 1/s.

Eq. (3) needs to be modified to accommodate the
possibility of a relaxation mechanism in the absence of
collisions, i.e., to prevent T1 fi 1 as f fi 0. We do this
by introducing the term cx

ffiffiffiffi
T

p
, which models a thermal-

ly mediated fluctuation whose effect is proportional
to field strength, where c is a fitting parameter.
Mechanisms for such intramolecular relaxation might
be vibration and rotation around bond axes. Thus,

T 1 ¼
1

aT
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 !

. ð4Þ

To calculate collision frequency, we need to know the
number density q and the molecular velocity m. We
calculate a number density by solving the Clausius
equation

P ¼ RT
~m� b

� c

T ð~mþ aÞ2
; ð5Þ

for the molar volume ~m. R is the universal gas constant,
a ¼ V c � RT c

4P c
, b ¼ 3RT c

8P c
� V c, c ¼ 27R2T 3

c

64P c
, where Pc and Tc

are critical pressure and temperature, and Vc is molar
volume at Pc and Tc. Then, we force the number density
through its known value at STP by setting

q¼
qh for qh P qSTP;

ql for qh < qSTP;

�
where qh ¼ qSTPq

�
Cl

and ql ¼ qhq
�
ClþqClð1�q�

ClÞ;
ð6Þ

where qCl and q�
Cl are the number density and amagat

density, respectively, according to the Clausius equation
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Fig. 1. Temperature dependence of collision cross sections. The top
graph shows X, the ratio of Lennard-Jones collision frequency to hard
sphere collision frequency as a function of the dimensionless temper-
ature, t*. Lennard-Jones molecules interact less at high temperatures
than low compared to hard spheres. The lower graph shows b, the
average number of collisions to effect spin–rotation interaction vs.
temperature for each gas. Effective changes in rotational state occur
even less often at high temperatures compared to low than do changes
in translational state.
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of state. That is, q�
Cl ¼

qCl
qCl;STP

, where STP ) 273.15 K and
101325 Pa.

We allow for the average molecular velocity to be
slightly greater than the Boltzmann velocity at high
number densities, due to spending time in one another�s
attractive potentials, by introducing a curve-fitting
parameter q, which is near one:

m ¼ 1� q 1� q
qideal

� �� � ffiffiffiffiffiffiffiffiffiffiffi
8kBT
pm

r
; ð7Þ

and where m is molecular mass. The average approach
velocity of a species i and the fluorinated gas of interest
is

�mi ¼
1

6mmi
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3
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where m and mi are the average molecular velocities of the
fluorinated gas and species i, respectively. For a pure
gas, this simplifies to �m ¼ 4m

3
.

With density and velocity in hand, the collision fre-
quency with a species i is then

fi ¼ Xiqipr
2
i �mi; ð9Þ

where Xi is the Lennard-Jones collision integral, interpo-
lated from Appendix Table I–M, column X(1,1)* in [29].
Xi is the frequency of collisions between Lennard-Jones
molecules divided by the frequency of collisions of hard
spheres of the same diameters. Xi is a function of tem-
perature, specifically of the dimensionless temperature
t� ¼ kBTffiffiffiffi

eei
p , where e and ei are the respective Lennard-Jones

energy parameters. Xi is close to 1, ranging from about
1.5 to 0.95 from low to high temperatures, respectively
(Fig. 1A), ri = (r + r(i))/2, where r and r(i) are the
respective Lennard-Jones diameters of the inert fluori-
nated gas and species i. The particular r(i) and ei we
chose from [29] appear in Table 1, along with physical
parameters.

With the temperature dependence of collision cross
sectionmodeled by Lennard-Jones collisions, the remain-
ing temperature dependence for relating spin–rotation
interaction to collisions (Fig. 1B) was modeled by setting

b ¼ 1

sXþ d
; ð10Þ

where s and d are curve-fitting parameters, and X is Xi

for pure fluorinated gas.
For a mixture of gases, we assume

xe

k2
¼ f =bþ f1=b1 þ f2=b2 þ � � � þ fn=bn; ð11Þ

where each bi is approximately the average number of
collisions with species i that effect one spin–rotation ex-
change in the fluorinated gas. We introduce a curve-fit-
ting parameter fi for each species i such that
bi ¼ fib
ffiffiffiffiffi
m
mi

r
. ð12Þ

The fi depart from one to the extent that the effect of
collisions on rotation departs from scaling with linear
momentum transfer. With this formulation, the temper-
ature dependence of the bi follow that of b.

For the ith component in a mixture, we set

qi ¼ 3.1 V c � NA

4

3
p

ri

2

	 
3� �
; ð13Þ

where Vc is the critical molar volume in m3 kmol�1 or
1 mol�1 and NA is Avogadro�s number, unless the mix-
ture species was one of the fluorinated gases for which
we had already determined q. The factor 3.1 roughly
agrees with the values of q that we determined for
SF6, C2F6, and c-C4F8. For CF4, q is not well
determined because under our experimental conditions,
q/qideal is very close to 1.



Table 1
The particular Lennard-Jones and physical parameters used

Species r (Å) e/kB(K) qidealðSTPÞ
qðSTPÞ Pc (kPa) Tc(K) Vc

(m3/kmol)

SF6 5.3 201 0.98538 3759.00 318.69 0.19805
CF4 4.68 140 0.99503 3739.00 227.59 0.13993
C2F6 5.3 220 0.98741 2980.00 292.85 0.22700
c-C4F8 7.03 222.6 0.95675 2786.00 388.45 0.32305
N2 3.8 60 0.99962 3400.00 126.26 0.090091
O2 3.48 103 0.99905 5043.00 154.58 0.073405
CO2 3.96 193 0.99321 7381.50 304.19 0.094052
H2O 2.641 809.1 0.98020 22120 647.25 0.057600
He 2.551 10.5 1.0004 229.00 5.20 0.057753
Ne 2.8 33 1.0006 2720.00 44.44 0.041738
Ar 3.5 110 0.99900 4864.00 150.72 0.075262
Kr 3.64 180 0.99938 5490.00 209.4 0.092239
Xe 4.2 200 0.99559 5838.00 289.74 0.11880
CH4 3.809 146 0.99773 4640.00 191.05 0.098713
C2H6 4.4 226 0.98962 4914.30 305.5 0.14172
CF3C1 4.92 222 0.99852 3870.60 302.0 0.18076
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For pure gases, we need to determine five parameters:
a, s, d, c, and q. For mixtures, we need a fi for each addi-
tional species.

To curve fit T1 data, we minimized the vertical dis-
tances of data from curves, Dabs =

P
jwj|T1j � cj|, where

cj are the curve-fit values, and wj are weights that are
equal to the reciprocal of the standard deviation of each
T1J, wj = 1/SD(T1j), rather than the least square error
Dsq ¼

P
jw

2
j ðT 1j � cjÞ2, which is unduly influenced by

outlying data. The normalized fit statistic for Dabs is

NFS � Dabs�
ffiffi
2
p

p
nfffiffiffiffi

nf
p , which approaches a normal distribu-

tion with mean zero and variance one for degrees of free-
dom nf > 30. If one knew the SD (T1j) with certainty,
values less than 2 would indicate that the data support
the model within the limits of measurement. Values less
than�2 indicate an unexpectedly good fit.We also report
the mean percentage deviation (MPD), which isDabs with
each term divided by T1j and the wj adjusted to sum to 1.

SD(T1j) were calculated as SDCV ðT 1jÞ þ ET 1j;P þ ET 1j;T ,
where SDCV(T1j) is the standard deviation of T1 from
the covariance matrix of the inversion-recovery curve
fit, and ET 1j;P and ET 1j;T are the errors in T1 obtained
by varying pressure and temperature within their preci-
sion, using the current parameters of the model. Because
the wj affect the fit, the calculation is iterated until there
is no change in the fit. For gas mixtures, we also add the
error in T1 that results from the precision with which we
prepared the mixture.

2.2. Measuring T1s

We used a standard inversion recovery sequence with
a repetition time of at least 8 T1 and at least 50 different
interpulse delays. When FIDs were off-resonance,they
were set to zero frequency by computation. When they
were noisy, the portions with a signal-to-noise ratio less
than three were discarded. To eliminate truncation arti-
facts, the FIDs were combined with their mirror images
so that the periodic extension would be continuous.
After a discrete Fourier transform, the sum of the 20
lowest frequency components of the real part was the
datum for a given interpulse delay. The data were fit
to a three-parameter exponential recovery curve with a
standard least square fitting algorithm.

Our 75.6 MHz data are from the 1.89 T 30 cm bore
Oxford magnet with Tecmag Libra console at New
Mexico Resonance (N.M.R.). Our 283 MHz data come
from the 7 T JEOL system at New Mexico Tech.,
Department of Chemistry (NMT).

2.3. Measuring pressure, temperature, and mixture
composition

For data in which we varied the pressure and temper-
ature of pure gas at N.M.R., we used an Omega PX303-
100A5V absolute pressure transducer, calibrated at two
pressures: barometric pressure measured with a mercury
manometer, and the vacuum of a two-stage vacuum
pump. Assuming that the response is linear, we took
the error in our pressure measurements to be half the
measurement division or ±50 Pa.

The temperature of the gas sample was measured with
a copper-constantan thermocouple glued with epoxy
through a hole in the side of the polycarbonate sample
container. The Omega HH507 temperature gauge tended
to drift by up to 0.3 K. We found no bias with the known
temperatures of dry ice in a pure CO2 atmosphere, of cov-
ered boiling distilled water at our local barometric pres-
sure, or of the temperature of ice surfaces in ice water.
We took the error in our temperature measurement to
be ±0.15 K.

To obtain low or high temperatures, we passed cold or
room temperature N2 gas over a homemade heater con-
trolled by an on/off switch according to a thermistor read-
ing in a downstream temperature chamber, which
consisted of a 41.5 mm ID polycarbonate tube surround-
ed by a 2 mm layer of Nanopore 0.0036 W/mK thermal
insulation that consisted of vacuum-packed carbon
impregnated SiO2 particles [30]. The sample container
was located 30 cm downstream from the thermistor and
provided enough thermal inertia so that, despite the on/
off heater control, the thermocouple in the sample did
not show oscillations more than ±0.15 K.

For the pure gas data collected at 283 MHz using the
7 T JEOL system at NMT, we calibrated the Omega
PX303-100A5V absolute pressure transducer at N.M.R.
and transported it to NMT to make sure that it agreed
with theBaratron pressure transducer on theMKSgauge.
We used a homemade 1 m long 5 mm Pyrex N.M.R. tube
for a convenient gas-tight connection that reached to the
center of the magnet. The commercial JEOL temperature
controller was set to 303 K, slightly above room tempera-
ture, to provide stable control.
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Data for gas mixtures at 75.6 MHz were obtained at
N.M.R. at room temperature (measured with a copper-
constantan thermocouple taped on the side of a glass
sample container, which was wrapped with closed-cell
pipe insulation) and pressure (measured with the mercu-
ry barometer, and approximately 84 kPa at our alti-
tude). The glass sample container was drawn down at
both ends and fitted with two small mylar balloons.
The balloons were flaccid to ensure that the pressure in-
side was barometric.

To produce known mixtures, we introduced known
volumes of two gases, measured with two 140 ml plastic
syringes that had the same cross sections, volume mark-
ings, and slight tapers (as measured with a dial caliper).
To make the syringes suitable for delivering pure gases,
we held the plunger in a drawn position and exposed them
to vacuum for 30 min to remove any sorbed contaminant
gases. The error in mixture was calculated from the pro-
portions representedby thefinest divisions on the syringes.

2.4. Comparison with data tabulated by number density

Many prior works use samples of known number den-
sity, which avoids issues of equation of state when study-
ing relaxation. We incorporate an equation of state
because being able to calculateT1s frompressure and tem-
perature is important for the convenience of a T1 calcula-
tor. As a consistency check, we make sure that our model
fits data taken from known number-density samples.
Johnson [17] provides an extensive set of such T1 data
for SF6 andCF4.His sample containerswere filled by con-
densing known volumes of gases at low pressures (at or
below 20 kPa) into known volumes. Thus, his number
densities are correct if we assume that low-pressure gases
obey the ideal gas equation. Some of the pressures are as
high as 15 atm, which gives us an opportunity to test an
extrapolation beyond our physical conditions.

To apply ourmodel to Johnson�s data, we use theClau-
sius equation to calculate a pressure fromhis number den-
sity and temperature and then use that pressure to
calculate the number density for an ideal gas. We then
use the ratio of Johnson�s number density to the ideal
number density to calculate the average molecular veloc-
ity from Eq. (7), using the q factor that we determined
from our data. We let the other four parameters (a, s, d,
and c) vary to see if the curve fit will yield the same values
as ours.
0 10 20 30 40
0

f *

Fig. 2. T1 data from SF6, CF4, C2F6, and c-C4F8 plotted on axes of
dimensionless T1 vs. dimensionless collision frequency. The data (dots)
are a good fit to the model (line). Both trace the curve T �

1 ¼ f � þ 1=f �,
except for expected departures near and to the left of the T1 minimum
(expanded in inset). The line consists of straight segments connecting
the model�s predicted T1 for the conditions and species of each datum,
so it follows a jagged path near and to the left of the T1 minimum.
3. Results

3.1. Pure gas data

To collapse many data from different gases and a
variety of physical conditions onto a few graphs, we
rearrange Eq. (4)
T 1aT
x

¼ f
bx

þ 1
f
bxþ c

ffiffiffiffi
T

p or T �
1 ¼ f � þ 1

f � þx� ffiffiffi
T

p
; ð14Þ

where T �
1 ¼ T 1aT

x is a dimensionless T 1; f � ¼ f
bx is a dimen-

sionless f, and x� ffiffiffi
T

p ¼ c
ffiffiffiffi
T

p
is a dimensionless frequency

proportional to
ffiffiffiffi
T

p
, and note that to the extent that x� ffiffiffi

T
p

is small compared to f*, all data should collapse onto the
curve T �

1 ¼ f � þ 1=f �. Indeed, our x� ffiffiffi
T

p ’s all are less than
0.236 f*, so when we plot T �

1 vs. f*, we see that
T �

1 ¼ f � þ 1=f �, except for small variable departures to
lower T �

1 near and to the left of the T1 minimum.
Fig. 2 shows 376 pure gas data points for the four

gases, SF6, CF4, C2F6, and c-C4F8, plotted on such
axes along with the curve for the model. The physical
conditions are listed on the figure. The parameters for
the curve fits appear in Table 2 for each gas. The er-
ror bars plotted are ±2SD(T1j). The points used to
plot the data are larger than most of the error bars.
In the inset, the portion around the T1 minimum is
expanded with thinner lines and dots. This is the
region where we expect to see the data and model
depart below T �

1 ¼ f � þ 1=f � to a small degree,
depending on gas species and temperature. The excep-
tional species is c-C4F8, for which c, the fitting param-
eter defined in Eq. (4), is essentially zero. This may
stem from the fact that c-C4F8 is a tightly constrained
molecule.
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Fig. 3. T1 data for known number densities of pure SF6 and CF4 from
Johnson�s thesis [17] plotted on the same axes as Fig. 2. The agreement
of model and data indicates that we made a good choice for equation
of state and that our model extrapolates well to pressures of 14 atm.
The curve-fitting parameters are in Table 2. The larger error bars on
the right reflect how the samples are prepared with known number
densities ±1% as opposed to monitoring the pressure. The datum in
parentheses was excluded from the curve fit.

Table 2
The five curve-fitting parameters for the pure gas T1 data

Species a (rad s�2 K�1) s (rad col�1) d (rad col�1) c (K�1/2) q NFS MPD
(%)

SF6 8.043e+09 ± 2.514e+07 0.7067 ± 7.455e�3 �0.2325 ± 7.974e�3 3.032e�3 ± 1.929e�4 0.4978 ± 0.05329 4.570 0.4550
SF6 using
virial ES

8.041e+09 ± 2.621e+07 0.7277 ± 4.871e�3 �0.2595 ± 5.493e�3 3.059e�3 ± 2.003e�4 Fixed at 0.4978 4.307 0.4244

CF4 6.738e+09 ± 1.899e+07 0.8516 ± 7.411e�3 �0.2969 ± 7.221e�3 1.865e�3 ± 1.673e�4 0.08738 ± 0.07374 5.650 0.4725
C2F6 2.027e+09 ± 6.699e+06 0.5976 ± 6.790e�3 �0.08502 ± 7.783e�3 8.881e�4 ± 1.996e�4 0.569 ± 0.0423 7.866 0.7884
c-C4F8 5.125e+08 ± 1.734e+06 0.6784 ± 8.814e�3 �0.1745 ± 9.566e�3 �1.211e�09 ± 2.361e�4 0.6543 ± 0.02547 0.3586 0.3521

±1 SD from covariance matrix.
MPD, weighted mean percentage deviation of T1 from curve.
NFS, normalized fit statistic has a normal distribution with variance 1 and expectation of zero if the model fits the data within the error bars shown in
Fig. 2.

D.O. Kuethe et al. / Journal of Magnetic Resonance 177 (2005) 212–220 217
The mean percentage deviation values in Table 2 indi-
cate precise agreement between our model and the data.
Nonetheless, with the exception of the c-C4F8 data,
which have a NFS = 0.359, the other NFS range from
4.31 to 7.37 indicating that the model does not fit the
data within the limits of measurement. Because these
statistics suggest a systematic error, it is important to
examine the possibility of biases in measurement that
could escape our precision of calibration. We could have
missed a 0.1 K bias in the temperatures of both dry ice
and boiling water. Our mercury manometer could be
miscalibrated by 0.3 mm, an error of 0.05% in measur-
ing length, which would translate to a bias of 270 Pa
at our highest pressure readings. If we allow ±0.25 K
and ±320 Pa rather than ±0.15 K and ±50 Pa for errors
in measurement of temperature and pressure, respective-
ly, to accommodate these conceivable biases, then the
NFS for our poorest fitting data set, the C2F6 data, be-
comes �1.40, rather than 7.87. This negative NFS value
indicates a fit that is somewhat better than expected.
Thus, we cannot rule out undetectable bias as an expla-
nation for the high normalized fit statistics, so we con-
clude that we have done as well as we could with our
equipment.

A simple procedure to reverse the curve-fitting pro-
cess and obtain bounds on the model�s prediction of
T1s is to vary the temperature at which one seeks the
T1 by ±0.25 K and the pressure by ±320 Pa and take
the lowest and highest of the four resulting values. This
procedure results in remarkably narrow ranges of about
0.5 to 1% for common laboratory conditions.

3.2. Comparison of previous data with known number

density

Johnson�s [17] pure gas data, tabulated by number
density, allow us to check how well we dealt with the
equation of state. Fig. 3 shows Johnson�s 279 data
points for pure SF6 and CF4 on the same axes as
Fig. 2. The curve-fitting parameters appear in Table 3.
The highest pressures we calculated for the given num-
ber densities for SF6 and CF4 were approximately 14
and 15 atm, respectively, so these data test an extrapola-
tion beyond our pressure range, which extends to only
2 atm. There are no individual Larmor frequencies given
with Johnson�s data. However, given that a and ab

should not vary with Larmor frequency, we found the
frequencies (184.7 and 184.5 MHz, for SF6 and CF4,
respectively) for which his data produce a value for
the parameter a that matches ours, and they are consis-
tent with the nominal hydrogen frequency of his magnet
(Nicolet 200 MHz, 4.7 T). We assumed that his number



Table 3
Four curve-fitting parameters for Johnson�s pure gas data

Species a (rad s�2 K�1) s (rad col�1) d (rad col�1) c (K�1/2) NFS MPD (%)

SF6 8.043e+09 ± 3.295e+07 0.7386 ± 8.338e�3 �0.2696 ± 9.43e�3 2.105e�3 ± 1.895e�4 �0.2489 0.5397
CF4 6.738e+09 ± 2.965e+07 0.9526 ± 1.365e�2 �0.4042 ± 1.422e�2 1.205e�3 ± 1.616e�4 0.4645 0.6703

NFS relative to error bars are shown in Fig. 3.
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densities and temperatures were correct to within 1%
and ±0.15 K, respectively. The resulting error bars and
fit statistics appear appropriate. Our model works well
with Johnson�s data, and the common parameters agree.

As a second comparison, we tried fitting our SF6 data
with the virial equation of state [31] that [13] used in-
stead of the Clausius equation. The results (Table 2)
are the same.

3.3. Gas mixtures

Fig. 4 shows that our model for T1s of mixtures fits
the data using the fi in Table 4. The dimensionless f*

for these mixtures is (f/b + f1/b1)/x. To obtain bounds
for predicted T1s of mixtures, one can follow the proce-
dure of bracketing the temperature and pressure within
4 6 8 10 12

4

6

8

10

12

T *
1

f *

Fig. 4. T1 data for mixtures of SF6, CF4, C2F6, or c-C4F8 with other
gases, as listed in Table 4, plotted on dimensionless axes. The model
fits the data.

Table 4
f parameters for gas listed on top in gas listed at side at room temperature

SF6 CF4

CF4

c-C4F8 1.291 ± .00785
N2 1.295 ± .00902 1.134 ± .00539
O2 1.215 ± .00612 1.063 ± .00402
CO2 1.015 ± .00518 0.8813 ± .00147
±0.25 K and ±320 Pa, as suggested above, while brac-
keting fi with ± its standard deviation.

Johnson�s thesis provides a wealth of data for gas
mixtures that our model can readily accommodate, so
we analyzed the gas mixtures for which we had Len-
nard-Jones parameters to provide a large variety of fi
parameters. Fig. 5 shows Johnson�s data for the mix-
tures represented by entries in Table 5. The outliers in
the center of the graph are the Ne data, which show suf-
ficient scatter to conclude that the unusually low fi is
probably wrong. The few outliers to the left are He data
and, while scattered, the fi appear reasonably well deter-
mined. The remaining data behave extremely well.

The fi parameters appear to vary slightly with tem-
perature, indicating that the bi may not track the tem-
perature dependence of b. This is reminiscent of
Jameson and Jameson�s [19] finding that there are vari-
ations in the exponents of temperature that determine
the collision cross section, depending on CF4�s collision
partner. However, the pattern according to partner
(CH4, C2H6, Ar, Kr, Xe, CO2, or SF6) in [19] appears
uncorrelated to that in Table 5, even after taking into
account the effect that different

ffiffiffiffi
eei

p

kB
for Lennard-Jones

molecules would have on the exponents for hard
spheres. In both cases, the temperature effects appear
statistically significant and we are at a loss to explain
the small discrepancy. However, the tabulated tempera-
ture effect is so small (around 8 · 10�4 K�1 or less) that
for the purposes of calculating T1s for gas mixtures in
lungs, it appears safe to measure fi at room temperature.

A stronger trend in the fi is that those molecules that
have high moments of inertia for their mass have lower
fi. It appears that they are more effective at changing the
rotational state of the inert fluorinated gas molecules in
collisions.

It would be difficult for us to measure fi for water va-
por. However, the SF6 T1s calculated for gas composi-
tions in lungs, assuming normal V/Q, agree with those
we measure in healthy rats [2] when we set fi for H2O to
1.1.
C2F6 c-C4F8

0.9738 ± .00489

1.235 ± .0162 1.275 ± .0152
1.178 ± .00701 1.335 ± .0146
0.9719 ± .00357 0.962 ± .00424



Table 5
f parameters for SF6 and CF4 mixtures in Johnson�s Thesis

SF6 CF4

T (K) f T (K) f

He 293.0 1.204 ± 0.0602 293.0 1.098 ± 0.0218
He 332.4 1.192 ± 0.0648 322.3 1.134 ± 0.0210
CH4 252.7 1.527 ± 0.0117 252.7 1.209 ± 0.00711
CH4 267.7 1.538 ± 0.0125 267.4 1.213 ± 0.00465
CH4 293.0 1.562 ± 0.0109 293.0 1.235 ± 0.00437
CH4 322.8 1.605 ± 0.0102 322.4 1.263 ± 0.00754
Ne 293.0 0.5107 ± 0.0193 293.0 0.5794 ± 0.00926
C2H6 252.7 1.199 ± 0.00461 252.7 1.029 ± 0.00382
C2H6 267.7 1.211 ± 0.00491 267.8 1.033 ± 0.00327
C2H6 293.0 1.232 ± 0.00398 293.0 1.050 ± 0.00168
C2H6 322.8 1.269 ± 0.00509 322.4 1.075 ± 0.00288
Ar 252.5 1.229 ± 0.0101 253.0 1.072 ± 0.00351
Ar 267.7 1.238 ± 0.0188 267.4 1.077 ± 0.00389
Ar 293.0 1.214 ± 0.00687 293.0 1.077 ± 0.00252
Ar 322.4 1.240 ± 0.0126 322.3 1.091 ± 0.00645
CO2 252.7 1.014 ± 0.00348 252.7 0.8726 ± 0.00237
CO2 267.7 1.020 ± 0.00265 267.8 0.8724 ± 0.00216
CO2 293.0 1.033 ± 0.00270 293.0 0.8803 ± 0.00162
CO2 322.8 1.058 ± 0.00346 322.4 0.9055 ± 0.00223
Kr 252.5 1.195 ± 0.00578 253.0 1.151 ± 0.00556
Kr 267.7 1.192 ± 0.00440 267.4 1.153 ± 0.00391
Kr 293.0 1.192 ± 0.00243 293.0 1.162 ± 0.00296
Kr 322.8 1.212 ± 0.00522 322.3 1.198 ± 0.00764
CF4/SF6 252.5 0.9962 ± 0.00356 252.5 1.076 ± 0.00306
CF4/SF6 267.8 0.9989 ± 0.00277 267.8 1.076 ± 0.00282
CF4/SF6 293.0 1.004 ± 0.00193 293.0 1.083 ± 0.00170
CF4/SF6 322.3 1.024 ± 0.00232 322.3 1.091 ± 0.00218
CF3Cl 252.7 0.9912 ± 0.00228 252.7 1.017 ± 0.00267
CF3Cl 267.7 0.9939 ± 0.00192 267.8 1.022 ± 0.00205
CF3Cl 293.0 0.9969 ± 0.00263 293.0 1.022 ± 0.00171
CF3Cl 322.8 1.014 ± 0.00212 322.7 1.031 ± 0.00212
Xe 252.5 1.299 ± 0.00516 253.0 1.324 ± 0.00589
Xe 267.7 1.301 ± 0.00324 267.4 1.331 ± 0.00410
Xe 293.0 1.303 ± 0.00235 293.0 1.346 ± 0.00191
Xe 332.4 1.328 ± 0.00766 322.7 1.360 ± 0.00467
O2 293.0 1.086 ± 0.00448
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Fig. 5. Johnson�s T1 data for mixtures of SF6 or CF4 with other gases,
as listed in Table 5. The curve uses the fi in Table 5 and our a, s, d, c,
and q parameters in Table 2. With the exception of the neon mixtures
that account for the outliers near the center, the model fits the data
well.
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Athigher pressures thanwe investigated here, the spin–
rotation relaxation rates could become sufficiently low
that dipole interactions with paramagnetic O2 may be-
come significant [20,22]. This raises the question of
whether we can safely ignore them. Given our simplified
analysis, this additional relaxation would express itself
as larger fi with odd temperature and field dependence.
The fi for CF4–O2 at 184.1 MHz in Table 5
(1.086 ± 0.00448) is close to, but significantly higher than
the one at 75.59 MHz in Table 4 (1.063 ± .00402). How-
ever, it does not appear to be unusually high compared
to other collision partners with similar mass distribution.
Among our data, the relaxation rate for c-C4F8 is the
slowest of the fluorinated gases, so this is where we would
most expect to see an artificially high fi due to O2�s para-
magnetism. The value of fi for c-C4F8–O2 (1.335 ± .0146)
is similar to that for c-C4F8–N2 (1.275 ± .0152), while it is
less than that for N2 for the other three gases, SF6, CF4,
and C2F6 (e.g., SF6–O2 1.215 ± .00612 vs. SF6–N2

1.295 ± .00902). Thus, it appears that we may be close
to the regime for which one would want to take the para-
magnetism of O2 into account. For pressures above 1 atm
or Larmor frequencies above 75.6 MHz, our calculations
forO2mixtures should not be extrapolatedwithout exper-
imental verification.
4. Conclusions

Eqs. (4)–(13) and curve fitting parameters in Tables 2,
4, and 5 allow one to calculate T1s of SF6, CF4, C2F6,
and c-C4F8 for common laboratory conditions. They
should be especially useful for spatially resolved V/Q
measurements in pulmonology. The particular physical
parameters we used appear in Table 1. The accuracy is
0.5 to 1% and is explicitly calculated by varying temper-
ature and pressure by ±0.25 K and ±320 Pa, respective-
ly, and taking the lowest and highest results. For gas
mixtures, T and P are varied using fi plus its standard
deviation and varied using fi minus its standard
deviation.
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